Definition: We define the null space of the $m \times n$ matrix A to be

 $\operatorname{null}(A) = \{ \mathbf{x} \text{ in } \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}$

(1)

Theorem 2 (Poole 3.21): If A is a $m \times n$ matrix, then null(A) is a subspace of \mathbb{R}^n .

Proof:
1.)
$$A \vec{\sigma} = \vec{O}$$
. Thus \vec{O} in null (A)
2.) Suppose \vec{X}, \vec{Y} in null (A).
(i.e. $A\vec{X} = \vec{O}$ and $A\vec{Y} = \vec{O}$).
 $A(\vec{X} + \vec{Y}) = A\vec{X} + A\vec{Y} = \vec{O} + \vec{O} = \vec{O}$, $\vec{X} + \vec{Y}$ is null(A) \checkmark
3.) Suppose \vec{X} in null(A) and C in IR.
(ie $A\vec{X} = \vec{O}$).
 $A(c\vec{X}) = cA\vec{X} = c\vec{O} = c\vec{O}$, $c\vec{X}$ in null(A)

Example 5: Consider the matrix
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
.

1.
$$col(A)$$
 is a subspace of $\square R^2$

2. $\operatorname{null}(A)$ is a subspace of $\[\] \]$